

KEUM01C 绝缘检测模块

使用说明

V2.7: 代替 V2.6

大连科海测控技术有限公司

大连科海测控技术有限公司

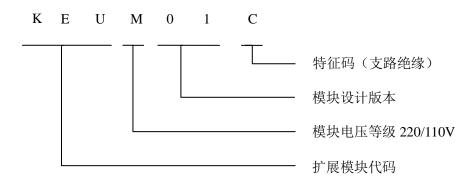
地址: 大连市旅顺兴海路 189 号

网址: www.dlkh.com.cn

电话: (0411) 86370799

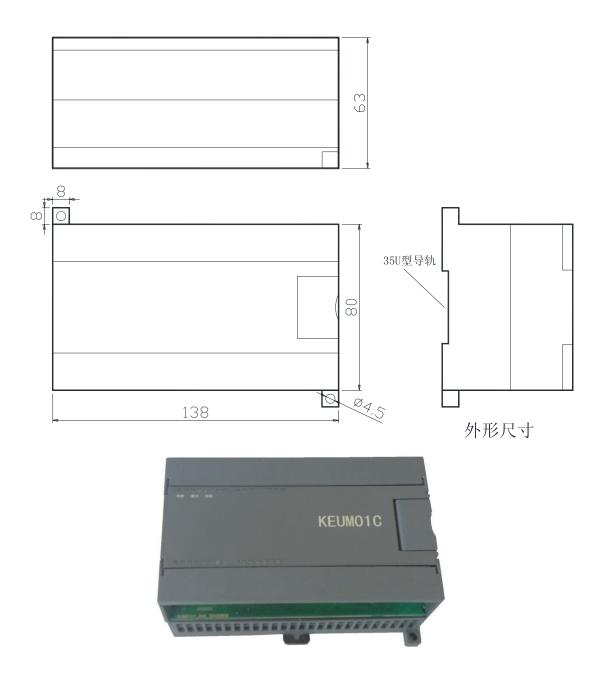
传真: (0411) 86370077

KEUM01C 支路绝缘扩展模块


支路绝缘扩展检测模块是一种可以扩展检测绝缘支路个数的装置。KEUM01C 作为 KGUM01 通用检测模块的扩展模块,协同工作,实现支路个数扩展。

KEUM01C 只检测支路的绝缘状态,运行状态受 KGUM01 控制。

KEUM01C 的主要功能如下:

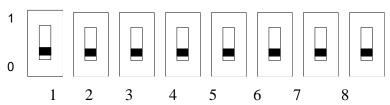

- 1、支路绝缘检测: 检测最多 32 个支路的正负对地电阻,并可根据设置的合母和控母支路进行分开检测。支路检测时需要在每条支路上配置漏电流传感器。
 - 2、与主模块通讯:通过 CAN 总线和 KGUM01 通讯,接受其控制,以及上送支路绝缘数据。
 - 3、报警继电器输出: 当模块检测到绝缘降低,主模块通讯中断时,继电器输出报警信号。
 - 4、指示灯状态指示: 具有电源,通讯,报警指示灯。
 - 5、上位机 RS485 通讯: 通过 RS485 接口可与上位机通讯。

1.1 型号说明

1.2 外观及端子定义

1.2.1 外观

1.2.2 指示灯

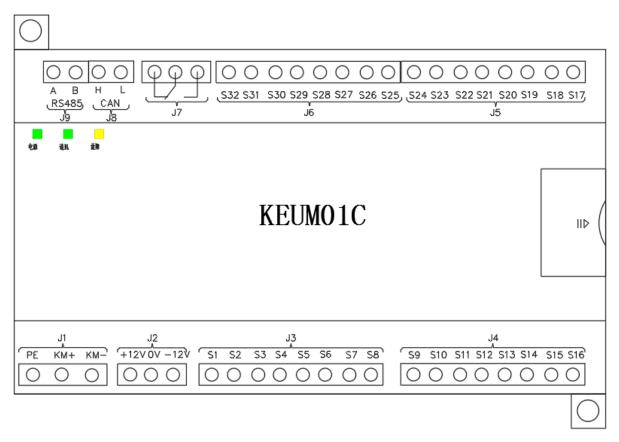

模块正面有3个指示灯,功能如下:

指示灯	名称	状态	说明
左(绿色)	(绿色) 电源指示灯	亮	工作电源正常
× (%)	2001414	灭	工作电源异常
中(绿色)	通讯指示灯	闪烁一次	与主模块进行了一次有效通讯
		灭	没有通讯
右(黄色)	报警,故障指示灯	亮	支路绝缘降低报警

	主模块通讯中断报警
灭	模块工作正常
闪烁	模块故障指示

1.2.3 拨码

模块内部设有8位拨码,可用于设置通讯协议,模块地址等:



拨码位	拨码值	功能	备注
1,2	11	芯片工作模式设置位,用于芯片维护,程序烧写等设置	出厂后固定值为 11, 随意改 动可能造成模块无法工作
	0	不进行传感器零点校准	必须处于该模式下,模块才 能正常工作。
3	1	模块上电后支路1传感器零点校准	该模式下,可进行传感器零点校准。需要在支路1传感器 器上接入零点信号。
4	0	不进行传感器正满度校准	必须处于该模式下,模块才 能正常工作。
	1	模块上电后支路1传感器正满度校准	该模式下,可进行传感器满 度校准。需要在支路1传感 器上接入满度信号。
	0000	模块地址为 0xB1	1#从机
	0001	模块地址为 0xB2	2#从机
	0010	模块地址为 0xB3	3#从机
5~8	0011	模块地址为 0xB4	4#从机
<i>3</i> ~6	0100	模块地址为 0xB5	5#从机
	0101	模块地址为 0xB6	6#从机
	0110	模块地址为 0xB7	7#从机
	0111	模块地址为 0xB8	8#从机

1000	模块地址为 0xB9	9#从机
1001	模块地址为 0xBA	10#从机
1010	模块地址为 0xBB	11#从机
1011	模块地址为 0xBC	12#从机
1100	模块地址为 0xBD	13#从机
1101	模块地址为 0xBE	14#从机
1110	模块地址为 0xBF	15#从机
1111	模块地址为 0xBF	模块最大地址为 0xBF

1.2.4 端子接口定义

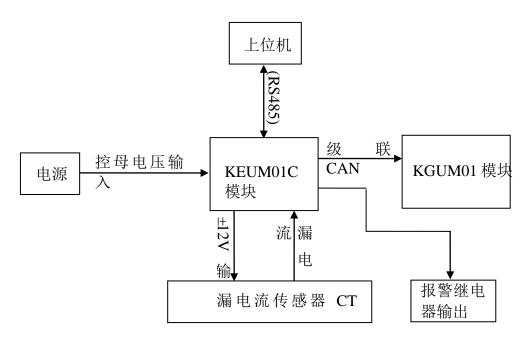
KEUM01C 模块的接线端子全部采用可插拔式,方便接线和维护,可热插拔。模块端子接口图如图所示:

端子定义如下表:

序号	端子名称	功能定义	备注
	PE	保护地	需独立设置,且可靠接地
J1	KM+	控制母线正极	电源端子
	KM-	控制母线负极	80~320VDC 供电

	+12V	传感器正电源	传感器供电端子,±12V 供电,
J2	0V	传感器零点电压	0V 为各个传感器信号的参考
	-12V	传感器负电源	电压。
	S1	支路 1 漏电流输入	
J3~J6			信号输入口,用于支路检测
	S32	支路 32 漏电流输入	
	NO	报警继电器常开触点输出端	报警干接点输出端子,与面板
J7	COM	报警继电器公共端	报警黄灯显示关联
	NC	报警继电器常闭触点输出端	
Ј8	L	CAN 通讯线负极	级联通讯接口(CAN),与
30	Н	CAN 通讯线正极	KGUM01 通用检测模块通讯
Ј9	В	485 通讯线负极	- 与上位机通讯口
37	A	485 通讯线正极	7 12-1/1 UVE NI (I

1.3 性能参数

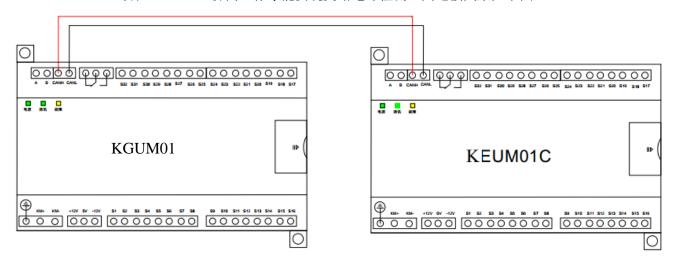

模块技术参数如下表:

序号	项目	指标
1	储藏温度	-25°C ~+70°C
2	运行温度	-5°C ~+55°C
3	工作电源	80 ~ 320VDC
4	检测支路路数	32 路
5	上位机接口	RS485: 波特率 9600, 奇校验, 数据位 8, 停止位 1
6	扩展接口	CAN: 波特率 10K, 2.0B 标准
7	支路绝缘电阻	0~120ΚΩ, ±5% ±1ΚΩ
8	支路绝缘判断时间	< 40 S

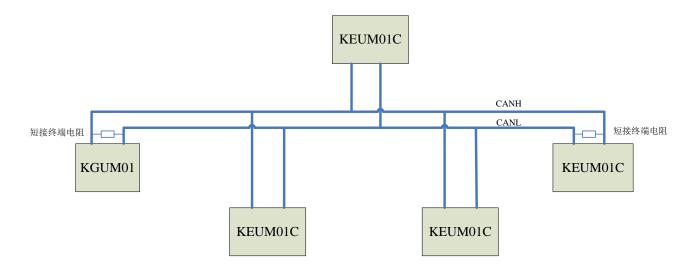
1.4 功能特点

1.4.1 模块工作原理

KEUM01C 模块的工作原理框图如下:

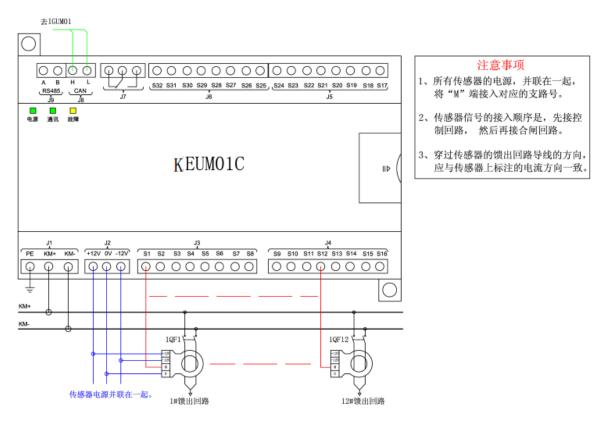

KEUM01C 模块仅具备支路检测功能,通过和 KGUM01 通讯从而计算出各个支路的绝缘电阻。支路绝缘检测首先向漏电流传感器 CT 输出出2V 电源,然后读取各个支路的漏电流数据,并根据母线对地电压,利用公式计算出各个支路的对地电阻。

当 KEUM01C 模块检测到支路绝缘降低时,将产生报警信号。

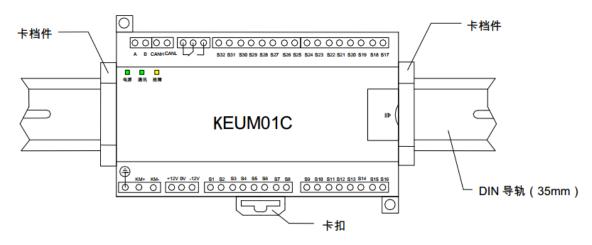

KEUM01C 也可以通过 RS485 接口与上位机通讯。

1.4.2 主从连接

KEUM01C 必须和 KGUM01 协同工作才能实现支路绝缘检测,其连接关系如下图:


扩展接口采用 CAN 总线,处于总线两端的模块需要短路内部的终端电阻。CAN 总线末端设备跳帽短接(终端电阻)图:

1.5 安装接线


1.5.1 模块接线示意图

KEUM01C 的接线方式与 KGUM01 相同:

1.5.2 导轨安装

模块采用导轨安装时,可参照下面的图示和说明进行:

- 1) 将模块底部的卡扣拔出;
- 2) 将模块安放到 DIN 导轨上;
- 3) 将卡扣退回原位,锁住模块;
- 4) 在两端放置卡档件,防止模块左右滑动。

1.6 故障处理

模块在使用过程中,可能因为接线或设置方面的错误,导致模块工作异常,针对常见的一般故障现象,处理措施可见下表,对于复杂故障可联系厂家或安排专人负责处理。

序号	故障现象	处理方法
		1、 模块供电电源为 80~280VDC, 用万用表检测电源输入电
1	 电源指示灯不亮	压是否正确,正负极性是否正确;
	电碳钼小灯 个完	2、 检查电源端子是否和模块接触良好;
		3、 检查指示灯是否损坏。
		1、检查与主模块是否通讯正常;
2	故障指示灯常亮	2、检查是否出现绝缘降低报警;
		3、模块绝缘报警门限设置是否正确;
3	通讯指示灯不闪烁	1、检查通讯是否正常;
3	世 机 相 小 月 小 月 冰	2、 检查指示灯是否损坏。
		1、 模块电源输入范围为 80~280VDC, 用万用表检测电源输
4	模块不工作	入电压是否正确,正负极性是否正确;
7	(关外/T·工) [2、 检查电源端子是否和模块接触良好;
		3、 检查拨码开关 1~4 位是否按照出厂规定正确设置。
5	上位机通讯失败	1、检查通讯线正负极性是否接入正确;
		2、检查通讯线端子是否和模块接触良好。
6	扩展模块通讯失败	3、检查 CAN 总线连接是否正确;

4、	检查扩展模块拨码开关是否正确设置了地址;
5、	检查末端模块是否正确接入了终端电阻 (短路跳帽插上)。